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Abstract— Dynamic modelling and fault detection play an
important role in the condition monitoring of gas turbine
engines (GTEs). Although system identification and Robust
Fault Detection Observer (RFDO) have been studied intensively,
on-board fault detection raises challenges. A fast identification
and discrete observer design is required because of the limited
computation ability. In this paper, an output error model is
identified first and a discrete observer is designed to avoid
the discrete-continuous conversion. With the aid of disturbance
frequency estimation, an improved performance index and a
fast left-eigenvector based robust observer design method are
proposed. As illustrated in the application results, a better
disturbance attenuation and fault detection performance have
been achieved.

I. INTRODUCTION

With the fast development of computer techniques, modern

aircraft gas turbine engines are controlled by full authority

digital engine controllers (FADEC), which makes it possible

to identify the dynamic model in real time and detect the

engine fault on-board. Because of the limitation of on-

board computation resources, fast dynamic modelling and

fault detection design are required. Although they have been

studied for several decades, system modelling and fault

detection are treated separately in most of the literatures. The

field of ’real-time output error modelling and fault detection

of GTEs’ is still relative young. In this paper, a combined

fast identification and observer design method are proposed

to bridge the gap.

On the GTE modelling, engine parameters may deviate

from the general engine model due to degradation and

individual characteristic difference ([1]). A data-guided mod-

elling for individual engine in-service is considered impor-

tant. Although a nonlinear model gains a lot of interests

from academic research, its computation complexity is too

high to be used on-board. A linear model is still very valid

but should be accurate enough. Auto Regressive eXoge-

nous (ARX) model is good for static modelling and can

be easily identified by the Least Square Estimation (LSE)
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[2]. However, as an Equation Error (EE) model, ARX is

biased for dynamic model ([3], [4], [5]) and would fail to

detect incipient faults. Therefore, Output Error (OE) model

is widely used in GTE modelling ([1]). The bottle neck for

OE model is that its identification is a highly nonlinear task,

which challenges the on-board application.

On the fault detection, the Robust Fault Detection Ob-

server (RFDO) has received much attention during the

last two decades [6], [7]. Eigenvalue assignment has been

successfully applied on observer design ([8], [9]). From

the viewpoint of computation complexity, the evaluation of

robustnes/sensitivity criteria is the most time-consuming task

in the RFDO design, because of the feature of iterative

optimisation. A lot of performance indices are proposed,

such as H2, H∞ , H2/H∞ ([6]), H− /H∞ ([10]). However,

the computation of H2, H∞ and H− requires an integral

or grading over the whole frequency, which is too complex

to be acceptable for the on-board application. In practice, a

satisfactory solution can only be found by a tradeoff between

the performance and computation costs.

In this paper, we propose a new performance index under

the assumption that the disturbance is band-limited. The

disturbance frequency is estimated from the Fast Fourier

Transformation (FFT)-based residual spectrum analysis and

then such information is integrated into the index evaluation

and optimisation. As a mature algorithm, FFT needs far less

computation than that of H∞-based methods. During the

optimisation stage, an left-eigenvector based pole assignment

method is used. As illustrated in the application to a GTE

fault detection, a significant improvement in sensor fault

detection has been achieved. As far as we know, combining

the frequency estimation and eigenvalue optimisation was

seldom established.

II. PROBLEM FORMULATION

In modern aero engines, as shown in Fig. 1, control

systems are usually organized as dual-lane systems with two

sets of parallel sensors and controllers ([11]). Consider the

condition monitoring of a two shafts GTE, the relationship

between the fuel flow Wf and the shaft speeds (low pressure

shaft speed Nlp, high pressure shaft speedNhp) provides

important information on health states of engines.

As an information redundancy exists within such two sets

of duplicated hardware, some fault detection is possible.

However, it is impossible either to decide which lane is in

failure, or to detect an actuator or component fault. In order

to detect these faults, a mathematical model acting as the

third ’virtual’ lane is introduced. It is worthy noting that,
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Fig. 1. Dual-lane in modern gas turbine engines.

the model in Fig. 1 has a ’parallel’ structure (output error

configuration).

If the system is corrupted by the disturbances and faults,

the system model becomes
{

x(t + 1) = Ax(t) + B[u(t) + fa(t)] + Bdd(t)
y(t) = Cx(t) + fs(t)

(1)

where where x ∈ R
n is the state vector, y ∈ R

r the

output (shaft speeds) and u ∈ R
p the plant input (fuel flow

rate). Usually, fa(t) ∈ R
p, fs(t) ∈ R

r are actuator and

sensor fault vectors, respectively. Bd ∈ R
n×nd is known as

disturbances distribution matrix. The disturbance d(t) ∈ R
d

can be caused by the variation of environment (ambient

pressure, air humidity, etc.) or flight conditions. d(t) can

also representant the the model uncertainty. For example

d(t) = ∆Ax(t) + ∆Bu(t) (2)

where ∆A, ∆B are the parameter uncertainties. In this paper,

we assume the disturbance caused by model uncertainties is

relatively small and the main disturbance is band-limited.

For system (1), the robust fault detection observer under

consideration can be constructed by
{

x̂(t + 1) = Ax̂(t) + Bu(t) + Kr(t)
ŷ(t) = Cx̂(t)

(3)

where r(t) = y(t)− ŷ(t) is the residual, K is the gain to be

determined.

Define the state estimation errors e(t) = x(t) − x̂(t), the

estimation error and residual dynamics takes the form
{

e(t + 1) = (A − KC)e(t) + Bfa(t) − Kfs(t) + Bdd(t)
r(t) = Ce(t) + fs(t)

(4)

By taking z-transformation of (4), the observer behaviour

can be described by the following transfer function matrices

(TFMs)

r(z) = Gf (z)f(z) + Gd(z)d(z) (5)

where

Gf (z) = [Ga(z) Gs(z)], f(z) = [fT
a (z) fT

s (z)]T (6)

and






Ga(z) = C(zI − A + KC)−1B
Gs(z) = −C(zI − A + KC)−1K + Ir×r

Gd(z) = C(zI − A + KC)−1Bd

(7)

It can be seen from (5) that, due to the existences of

disturbances, r(k) is not zero even if no faults occur. The

effects of disturbances act as a source of false alarms.

Therefore, such negative effects need to be attenuated as

much as possible, and the effects of faults should be enlarged.

The solution to on-board condition monitoring and fault

detection can be stated as a 3-step procedure as follows:

• Dynamic Modelling Collect the engine data Wf and

[Nlp, Nhp], and check identifiability, remove offset.

Then a linear dynamic model is identified.

• RFDO design Determine the optimal K such that

||Gd(z)|| is minimised and ||Gf (z)|| is maximised.

• Conditon Monitoring After the modelling and observer

design finished (it can take 10-20 sec), then for some

time (up to several hours) this scheme is used to detect

whether any fault or abnormal condition occur.

III. OE MODELLING

The challenge for on-board modelling of GTEs is the

development of a fast iterative OE model identification

algorithm. In this section, the standard Nonlinear Least

Square (NLS) algorithm is used. The proposed algorithm

is formulated by first obtaining a recursive expression for

the gradient calculation of an OE model. Then, the Hessian

matrix is approximated by the first derivatives to further

accelerate the identification speed.

By linearising the detailed thermodynamic GTE model,

the dynamic model of Wf → [Nlp, Nhp] can be mathemat-

ically described by two n-th order Single-Input and Single-

Output (SISO) submodels:

ŷi(t) =

∑n
j=1 βi,jq

−j

1 +
∑n

j=1 αi,jq−j
u(t) = θT

i · ẑi(t) (8)

where i = {1, 2} and θi = [αij . . . βij ]
T , j = 1 . . . n is the

parameter vector (θi ∈ R
2n) and ẑi(t) = [ŷi(t − 1)...ŷi(t −

n) u(t−1)...u(t−n)]T , (ẑi(t) ∈ R
2n). Note that ẑi(t) in (8)

contains the model prediction ŷi(t−j) etc., in stead of actual

plant output yi(t− j). This is the so-called OE model and is

more difficult to be identified than the common EE model.

Because the model prediction ŷi(t) not only depends on the

parameters, but also on the previous prediction ŷi(τ), τ < t,
the error surface becomes a highly nonlinear function ([3]).

This is the main difference from EE model.

In OE identification of the i-th submodel, the objective is

to minimise the following objective function:

min
θi∈ℜ2n

E(θi) =
N

∑

t=1

(yi(t) − θT
i · ẑi(t))

2 (9)

where N is the total number of data pair. In NLS, the update

of parameters is given by

θi(k + 1) = θi(k) − η∗ · [Ri(k)]−1 ·
∂E(θi(k))

∂θi

(10)
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where η∗ is a series of positive decreasing scalars, in term of

step size, and R(k) is a 2n-by-2n positive definite matrix to

modify the search direction. Here,
∂E(θi(k))

∂θi
∈ R

2n denotes

the derivatives of E(θi) with respect to θi at θi = θi(k).

A. Calculation of ∂E(θi(k))/∂θi

The gradient calculation is the basis of NLS algorithm.

The correctness of the gradient calculation affects the search

performance significantly. In our identification, the certain

characteristics of model prediction dependence are exploited

to form the iterative calculation of gradient.

For equation (8), note that ẑi(t) involves previous model

prediction ŷi(τ), τ < t and then is also a function of

parameters θi. Therefore,
∂ẑi(t)
∂θi

is not zero. Consider this

and let gi(t) = ∂εi(t)
∂θi

denote the local gradient information

at sample time t in the k-th iteration, it follows that

gi(t) =
∂(yi(t) − ŷi(t))

∂θi

= −
∂(θT

i (k) · ẑi(t))

∂θi

= −(ẑi(t) +
∂ẑi(t)

∂θi

· θi(k))

= −ẑi(t) −
[∂ŷi(t − 1)

∂θi

· · ·
∂ŷi(t − n)

∂θi

. . .

∂u(t − 1)

∂θi

· · ·
∂u(t − m)

∂θi

]

· θi(k)

= −ẑi(t) + [gi(t − 1) · · · gi(t − n) 0 · · · 0] · θi(k)
(11)

As such, it can be obtained that

∂E(θi(k))

∂θi

= 2
N

∑

t=1

εi(t) · gi(t) (12)

Remark 1: Compared to commonly used gradient calcu-

lation that usually contains only the first term on the right-

hand side of Eq. (11), the iterative computing of gradient

gi(t) is the key idea to improve the identification speed.

Furthermore, the estimation bias in EE model is removed

by the definition of OE error, and the dependency of errors

is solved by computing the local gradient gi(t) in a iterative

form, (11).

B. Approximation of Ri(k)

At k-th step of θi updating, since gi(t), (1 < t < N) have

been calculated for every time instant t, the Jacobian matrix

of the objective function (9) can be straightly obtained by

transforming gi(t) into matrix form:

Ji(k) = [gT
i (1) gT

i (2) · · · gT
i (N)]T (13)

where Ji(k) ∈ R
N×2n. With the aid of the second-order

Taylor expansion of objective function (9), it is well known

that Ri(k) in (10) can be approximated by the Hessian

matrix which consists of the second derivatives of (9).

Computing the second derivatives is time consuming and

not suitable for on-board processors. In order to avoid the

computation of the second derivatives, the Hessian can be

further approximated by the Jacobian (the 1st derivatives).

Ri(k) ≈ Hi(θi(k)) ≈ J
T
i (k) · Ji(k) + ε(t)

∂2εi(t)

∂θi∂θT
i

(14)

If the second term on the right-hand side of (14) is ignored,

it becomes the so-called Gauss-Newton method.

Remark 2: The main advantage in this approximation is

that only the first-order derivatives need to be calculated.

Since such derivatives have been available in the computation

of local gradients, no extra computation are required.

Remark 3: The search direction is further modified from

inverse gradient by a approximated Hessian matrix. There-

fore, the search direction and convergence speed should be

better than those deepest descent methods.

IV. FREQUENCY-DEPENDENT PERFORMANCE INDICES

After each SISO model (8) is identified, they are trans-

formed into state-space representations which are useed to

design fault detection observers. The design of a robust fault

detection observer is a 2-step task: (1) the definition of the

performance index; (2) the optimal selection of K.

A. Robustness Performance Index

Many robustness performance indices have been proposed

during the last two decades. H∞-norm performance has been

widely accepted. However, its computation cost is too high

to be affordable for on-board processors. This is because the

H∞-norm requires griding over the whole frequency [0, π],
computing the singular value and finding the largest one.

Based on the observation that the main disturbances in GTE

systems are frequency band limited, in order to reduce the

computation of the observer design, a modified frequency

dependent robustness index is proposed here.

min ‖Gd(z)‖z=ejwd (15)

where the disturbance is assumed mainly concentrated at

some frequency wd, 0 ≤ |wd| ≤ π. Hence, the time-

consuming computation of H∞-norm over [0, π] is avoid.

Similar to H∞ theory, here the disturbance is still un-

known which raises a new problem: how to estimate wd.

It is well known that a SISO system does not change the

output frequency from input frequency. It is also true for

discrete-time observer and can be stated as :

For a discrete system (1) corrupted by a band-limited

disturbance d(t) (whose main frequency component is at

wd), if observer (4) is stable, then at steady state, by collect-

ing residual r(t) for long time enough, the main frequency

component wf in residual spectrum is equivalent to wd.

{wr|wr ∈ spec(r(t))} ⊆ {wd|wd ∈ spec(d(t))}

where, the (power) spectrum of r(k) is defined as the sum

of its DFT (Discrete Fourier Transform) sequence |Ri[n]|
squared, spec(r(t)) =

∑i=p
i=1 |Ri[n]|2.

It follows that the index (15) can be computed as

minJ1 = ‖Gd(z)‖z=ejwr (16)
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B. Sensitivity Performance Index

In order to avoid the computation of ||Gf (z)||∞, similarly,

the frequency information of faults should be taken into ac-

count. In the frequency domain, an incipient fault comprises

mainly low frequency components. For abrupt faults, high

frequency contents only exist at the time instant when faults

begin, and it is almost constant thereafter. Therefore, the

steady state gain Gf (z)|z=1 is the most important factor

in fault detection. [7] proposed a strong fault detectability

condition: ‖Gf (s)‖s=0 6= 0. In this paper, it is proposed that

the ‖Gf (z)‖z=1 index should be maximised for increasing

the fault significance, which gives

maxJ2 = ‖Gf (z)‖z=1 (17)

Combining the robustness index (16) and sensitivity index

(17) leads to the whole performance index as:

minJ =
J1

J2
=

‖Gd(z)‖z=ewr

ρ + ‖Gf (z)‖z=1
(18)

where ρ is a small positive real number that guarantees the

denominator will not be zero.

Remark 4: Since the variable z in (18) is assigned specific

values wr and 1, respectively, the norm computation of a

TMF is replace by the norm calculation of a constant matrix.

Compared to the H∞ TMF-norm that requires calculation

over the whole frequency [0, π], and the computation of a

real coefficient matrix is very low.

Remark 5: As the frequency information is incorporated

into the new index (18), the resulting observer is optimal for

attenuating such a disturbance. In most applications, such an

observer has a better performance than the conservative H∞

observer.

V. FAST RFDO DESIGN

As shown in a lot of literature ([7], [12]), eigenvalue

assignment method is able to assign the eigenvalue arbi-

trarily to the desired places and satisfy certain additional

performance index. It is very suitable for solving the RFDO

problem. The idea of the eigenstructure assignment is to

assign the eigenvalues of A−KC (the poles of the observer

(4)) arbitrarily to the desired places {λi} by selecting an

appropriate K ∈ R
n×p. With the aid of the modified perfor-

mance index (18), a left eigenvectors assignment observer

design method is proposed.

Under some weak conditions [12], the gain matrix K
of observer (3) and the TFMs Gd(z), Gf (z) can be

parametrized by eigenvalues λi and free parameters qi, as

shown in the following Lemma.

Lemma Let A, C be observable, then, for any group of

scalars λi, i = 1, 2, . . . , n , the gain matrix K can always

be parameterised as:

K = L−1Q (19)

where Q = [q1 q2 . . . qn]T is free parameters and L ∈ R
n×n

is composed of the left eigenrows li of A−KC, correspond-

ing to the eigenvalue λi respectively. L is determined by

L =







lT1
...

lTn






=







qT
1 C(A − λ1I)

−1

...

qT
n C(A − λnI)−1






(20)

The discrete TFMs (7) can be expanded as

Gd(z) = C RΨ(z)L Bd

Gf (z) = [CRΨ(z)LB − CRΨ(z)LBL−1Q + I]
(21)

where

Ψ(z) = diag(
1

z − λ1
, . . . ,

1

z − λn

) (22)

and

R = L−1 = (r1, r2, . . . , rn) (23)

Proof The proof for parametric expression of gain matrix

K in continuous domain is standard, see [12]. For the

parametric expression of TFMs, it is similar to the Lemma

10.2 in [12]. By replacing the s-transformation with the z-

transformation, the inverse of any discrete TFM (zI − A +
KC)−1 can be expanded as

(zI − A + KC)−1 =
r1lT

1

z−λ1

+ . . . +
rnlTn
z−λn

(24)

Substituting (24) into (7) gives the parametric expressiones

of Gd(z) and Gf (z). Then rewriting it into matrix form gives

(21). Q.E.D.

Base on the discussion above, the solution to discrete

RFDO under quasi-stationary disturbances can now be states

as the follows:

If the main frequency contents of residuals r(k) can be

estimated at wr, then minimising the performance index

J =

∣

∣

∣

∣

∣

∣
CRΨ(z)LBd

∣

∣

∣

∣

∣

∣

z=ejwr

ρ +
∣

∣

∣

∣

∣

∣
CRΨ(z)LB − CRΨ(z)LBL−1Q + I

∣

∣

∣

∣

∣

∣

z=1
(25)

gives the optimal gain matrix K = L−1Q such that the effect

of the disturbance d(k) is attenuated and the sensitiveness

of the residual to faults is enhanced at the greatest extent.

VI. APPLICATION AND RESULTS

To illustrate the proposed observer design approach, this

section presents the results of application to incipient fault

detection of a gas turbine engine. Real engine fuel flow

data gathered from the engine test-bed are used ([11]). 1500

data pairs were collected at sampling rate 40Hz from normal

engine operation.

A. System Identification

For simplification, only the identification of the Wf →
Nlp model is shown here. The same process can be applied

to Wf → Nhp. In order to show the iterative search clearly

(see Fig. 2), a first order model is used for illustration. It can

be seen from the contour of OE objective function surface in

Fig. 2 that the objective function of OE model is nonlinear

with a narrow valley around the global minimum (∆). The

initial values are θ0 = [0.5 0.05]T . In the deepest gradient
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method, even after 200 iterations there is still a considerable

distance from the minimum. For the Gauss-Newton method,

the search route is obviously better whose direction points a

more straightforward way. Furthermore, only 18 iterations

are needed to arrive at the minimum. Compared to the

deepest gradient method, the convergence speed of Gauss-

Newton increases dramatically and the parameters’ estimates

are more accurate.

a1

b
1
(×

10
−

1
)

Search Routes of Parameter Identification

 

 

0.5 0.6 0.7 0.8 0.9 1
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[0.97, 0.55]

[0.98,0.43]
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Deepest Gradient

∆     Global Minimum

Fig. 2. Searching routes of Deepest Gradient method (solid) and Gauss-
Newton method (dashed).

In the real application, the second order model is identi-

fied, as listed in Table I. It can be seen that only 103 iterations

were involved in the modified Gauss-Newton method.

TABLE I

LONG-TERM PREDICTION FOR 2ND ORDER MODEL

Iter- on Training Data on Validation Data
Methods ations STDs MSEs STDs MSEs

LSE 1 3.41291 1.16613 2.87529 10.3296
ARX 1 3.93632 1.55375 3.05683 11.5071
RIV N/A 1.25340 1.81345 1.97333 5.19088

ExhSrch a
10

6 1.25624 1.78773 1.95562 5.16392

OE1 b 20000 2.30235 5.39615 2.74971 9.22707
OE2 c 103 1.25624 1.78773 1.95563 5.16391

aexhaustive search method
bdeepest gradient search method
cGauss-Newton search method

Then, a reduced order model of the GTE is formed by

converting the two SISO submodels into the state space with

parameters:

A =

[

0.9769 0.0038
0.0936 0.9225

]

, B =

[

2.1521
3.8186

]

, C =

[

1 0
0 1

]

(26)

The input and outputs signals and model predictions are

plotted in Fig.3.

B. Fault Detection

In this application, the detection of sensor faults is the

focus. and both abrupt and incipient faults are considered.
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Fig. 3. The input, the measured outputs and their model predictions. The
data has been subtracted from the operating point equilibrium at steady
state.

The disturbance model is assumed as

Bd = [0.1510 0.0500]
T

(27)

The disturbances injected to the systems are

d(k) :=

{

d1(k) = sin(2k) + cos(2.1k + π
4 )

d2(k) = sin(2.1k)
(28)

and its 512-point FFT based spectrum is shown in Fig. 4 (a).

In order to estimate the disturbance frequency, a gain matrix

K0 is first constructed via place(A’,C’, [-0.5 0.5])’ and its

residual spectrum is shown in Fig. 4 (b). The coincidence be-

tween plot (a) and (b) verifies that the disturbance frequency

can be estimated by residual spectrum.
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Fig. 4. (a) Disturbance Spectrum and (b) its frequency estimation through
512-point FFT-based residuals spectrum analysis

During the eigenstructure assignment, the desired poles

region are set as norm(λi) < 0.75. The initial values of

λi are [−0.5 0.5] which ensure that they are distinct from

the GTE poles [0.9828, 0.9166]. The optimal gain matrix K
given by the eigenstructure assignment algorithm is

Kopt =

(

3.3769 −11.0584
0.9516 −2.8394

)

(29)
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with optimal poles [0.6519, 0.7100] and performance index

J = 0.0005583. For comparison, Kplace are computed

by using place command provided by MATLAB Control

Toolbox,which gives

Kplace =

(

0.3250 0.0038
0.0936 0.2125

)

(30)

where Kplace gives the identical eigenvalues as Kopt.

C. Detection of an Abrupt Fault

A small abrupt sensor fault in the speed sensor for low

pressure shaft is simulated by adding a small step (0.25)

to the output signal Nlp. The simulated fault takes place

at 10.05s when the outputs reach the maximum negative

values. Fig. 5 shows the norm of the residual vector. The

observer Kplace fails to detect such an abrupt fault, as there

are no apparent changes of ‖r(k)‖place after fault happening.

However, Kopt gives a significant step increase in its residual

immediately after the fault occurring.
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Fig. 5. Residuals of Kopt and Kplace in the case of abrupt sensor fault
with amplitude 0.25

D. Detection of an Incipient Fault

The ability of the proposed RFDO to detect drifting faults

is also demonstrated here. Such faults are extremely difficult

to detect immediately from a simple visual inspection of the

output signals. To simulate the incipient fault of sensor gain

drift of 0.5 units per second, the fault function added to the

Nlp is given by f(t) = 0.5(t − 10.05), (t > 10.05). The

residuals are shown in Fig. 6.

Similar to the abrupt fault case, Kopt shows a great

improvement on detecting incipient faults. From the view

point of fault detection delay, Kopt can give fault alarm less

than 3 seconds after the fault happening and no false alarm

thereafter. However, even 10 seconds later, the Kplace fails to

detect the fault. This verifies that Kopt can detect an incipient

fault earlier and clearer.

VII. CONCLUSION

This paper proposes a dynamic modelling and discrete

robust observer design approach for fault detection of GTEs,

in which the disturbances can be assumed band-limited. A
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Fig. 6. Residuals of Kopt and Kplace in the case of incipient sensor
faults

recursive expression of the gradient calculation is presented

and the Hessian matrix is approximated by the first deriva-

tives to further accelerate the identification speed. For a

better disturbance attenuation, the disturbance frequency is

estimated through the FFT-based residual spectrum. Then a

simplified but effective robustness/sensitivity index is pro-

posed and the lefteigenvector-based eigenvalue assignment

is used to find the optimal gain K. The advantages of the

proposed method are that less computation is required and

the fault detection performance is remained.
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