
A Simulation Environment of Solar-Wind Powered
Electric Vehicle Car Park for Reinforcement

Learning and Optimization
Handong Lia, Xuewu Daia*, Richard Kottera, Nauman Aslama, Yue Caob

a Dept. of Mathematics, Physics and Electrical Engineering, and ReNU, Northumbria University, Newcastle upon Tyne, UK
b School of Cyber Science and Engineering, Wuhan University, China

Email: {handong.li, xuewu.dai,richard.kotter,nauman.aslam}@northumbria.ac.uk,yue.cao@whu.edu.cn

Abstract—The transportation sector is the second greatest
contributor to carbon emissions in the UK and Newcastle upon
Tyne, accounting for around 33 % of total emissions in 2020. In
accordance with the United Kingdom’s goal to reach net zero by
2050 (and the city of Newcastle upon Tyne’s ambition to do so
by 2030), electric vehicles (EVs) play a crucial role in achieving
net zero road transportation. However, if the electricity used to
charge EVs is derived from fossil fuels, this does not necessarily
imply a reduction of overall emissions nationally or globally.
To achieve optimal EV charging, a deeper comprehension of
the unpredictability of (on-site renewable energy sources) ORES
energy output is required. In this paper, the predicted renewable
energy generated is used as the actual value for the reinforcement
learning algorithm simulation environment. Such a model is
able to represent the relationship between the power generation
and the wind speed as well as solar irradiation, which are
characterized by significant uncertainties due to weather changes
in both the short-time (hourly) and long-term (seasonally). The
uncertainty analysis shows that the uncertainties in wind speed at
Newcastle upon Tyne can be modelled as a Weibull distribution
with parameters A = 19.98 and B = 1.91. As for energy demand,
this paper integrates information from an Oslo (Norway) car
parking garage based set of EV charging stations with EVs’
demand statistics. The charging habits of EV users range from
800 minutes to 1,000 minutes of parking time, and from 5 kWh to
20 kWh in terms of charging energy. The maximum connection
frequency for EV charging is 20 minutes. In addition, this paper
develops methods for stochastic EV charging and parking space
occupancy employing actual data. On the basis of the aforesaid
renewable energy generation and the EV charging status, it is
possible to develop a decision algorithm to optimal renewable
energy efficiency.

Index Terms—ORES, reinforcement learning, Wind power,
Renewable energy, EV

I. INTRODUCTION

In accordance with the United Kingdom’s aim of reaching
Net Zero by 2050, one of the primary objectives of the
EPSRC’s energy topic is to promote the effective use of
renewable energy through digital technology. Electric vehicles
(EVs) powered by renewable energy are one of the possibilities
for achieving carbon-neutral road travel, the second largest
source of carbon emissions in the United Kingdom and in
Newcastle upon Tyne or Gateshead (contributing about 33%
of total emission in 2020)[1]. The primary challenge is to
increase the use of renewable energy sources (RES) for EV
electricity, yet the public strategy/guidance does not clearly

describe charging management through RES. Recent trends
in RES indicate that there will be a growing number of
small-scale RES deployed on-site [2], also known as on-site
renewable energy sources (ORES).

Photovoltaic (PV) systems, which can reduce the parking
demand stress, also show variation due to weather conditions.
A hybrid optimization algorithm for energy storage manage-
ment is proposed, which shifts its mode of operation between
the deterministic and rule-based approaches depending on
the electricity price band allocation [3]. [4] presents a new
multistage distribution expansion planning model where in-
vestments in distribution network assets, RES, Energy storage
systems (ESS) and EV charging stations (EVCS) are jointly
considered. An online optimal control strategy for power flow
management in microgrids with on-site battery, renewable
energy sources, and integrated EVs is presented in [5]. A
reinforcement-learning-based energy management algorithm is
proposed to reduce the operation energy costs of the target
smart energy building under unknown future information in
[6]. One such group objective considered in the paper includes
marketing flexibility (charging or discharging) to the Day-
ahead (DA) spot market, which can provide both a) financial
incentives to the owners of such systems, and b) an increase in
the overall absorption rates of renewable energy. The respon-
sible agent for marketing and offering such flexibility, herein
aggregator, is directly controlling the participating batteries,
in exchange to some financial compensation of the owners of
these batteries. A novel approach to reduce renewable gener-
ation curtailments and increasing system flexibility by means
of electric vehicles’ charging coordination is represented in
[7]. For uncertainty analysis on the energy demand side, [8]
suggests a stochastic method for simulating the uncertain
time and amount of plug-in electric vehicles (PEVs) charging
demand.

Based on the above research and methodological ap-
proaches, this paper provides the simulation environment for
renewable energy input match the EVs charging demand for
future reinforcement learning algorithm. The contributions of
this paper are three-fold:

• Design a simulation environment for reinforcement learn-
ing that combines the energy requirements of renewable
energy and EV charging.



• Development of models for wind and solar energy are
suggested in this study which have the ability to transform
wind speed and solar irradiance into generation predic-
tions.

• A data-driven simulation. Realistic data of a EV car park
collected from our previous project SEEV4City [9] are
used to simulate the EV charging events.

II. PROBLEM DESCRIPTION

The solar-wind powered EV car park and the charging
system to be studied in this paper is illustrated in Fig. 1.
This system comprises of various On-site Renewable Energy
Sources (ORES) including solar panels and wind generators, a
stationary battery energy storage system (BESS), a collection
of EV chargers (either AC or DC), and an Energy Hub to
monitor and control the energy flow in the system. The system
is also connected to the main grid. The Energy Hub maintains
a bank of unidirectional or bidirectional inverters that connects
the ORES, BESS, EV charging stations, grid connection and
controls the energy exchange between the supply and demand
sides.

Fig. 1. A grid-connected solar-wind hybrid electric vehicle charging system
for EV car parks

The purpose of an EV charging system with on-site renew-
able energy sources is to use as much renewable electricity
from the ORES as feasible to charge the corresponding EVs
while only using the minimum amount of capacity from the
BESS, minimising the BESS’s capital and operational costs.
In other words, the objective is to enhance the use of ORES
with less energy imported from/exported to the grid and the
BESS. The problem is to combine the numerous components
in order to enhance their efficiency and economy.

To maximise the use of ORES for EV charging, it is difficult
to determine the ideal charging schedule due to the uncertainty
on both the supply and demand sides. The creation of inter-
mittent renewable energy (wind and solar power) fluctuates
with time, making it difficult to accurately predict how much
renewable energy will be produced. On the energy demand
side for EVs, the unpredictability of EV charging demand is
variable owing to shifting travel demands, user behaviours,
weather and traffic conditions, etc. This research focuses on
modelling the supply side of the on-site renewable energy

system and the random allocation of energy on the demand
side using actual data. The purpose is to develop a realistic
model to mimic the varying features of the PV and wind power
generation for the uncertainty EV charging, so that this model
can be used as an environment for training and evaluating
a reinforcement learning agent or any other algorithms to
optimize the EV charging schedule.

The major sources of uncertainty on the source side are the
volatility of renewable energy generation and the prediction
inaccuracy of renewable energy output. The generation of
renewable energy may be strongly impacted by environmental
circumstances, and the unpredictability of weather can impact
the output of wind turbines. It is commonly considered that
the Weibull distribution governs wind speed. The total hori-
zontal sun irradiation, temperature, humidity, cloud cover, air
pressure, and other factors, such wind speed, have a significant
impact on photovoltaic output power [9]. On the other hand,
the real charging load of EVs shows significant uncertainty
due to random changes caused by vehicle operation, traffic,
the environment, people behavior and other factors [10]. Since
renewable energy resources (RES) play a critical role in future
distribution systems [11] considers the presence of RES and
their stochastic nature has been modeled. [12] provides a new
idea and technological approach for the sectional dispatch
of the power grid and optimizing EV load in the future.
In order to solve the problem of the electric vehicle (EV)
charging amount fluctuation caused by the variation of driving
speed during dynamic wireless charging [13] proposes an EV
dynamic wireless charging control method adapting to speed
change.

In summary, this paper employs solar irradiance and wind
speed as uncertain sources of energy generation. Reinforce-
ment learning can be used as an algorithm to integrate en-
ergy generation and consumption by analysing the uncertain
demand for EV charging as a source of energy from the car-
park charging stations. Using this method, as seen in Fig. 2, an
environment in which energy production is coupled with the
uncertainty of EV charging may be constructed as the platform
for subsequent matching of energy supply and generation.

III. MODELLING WITH POWER GENERATION AND
DEMAND

In this section, the predicted power is adopted to develop
the model to simulate the uncertain wind power and solar
power generation. Fig. 2 illustrates the overall modelling,
where PE(k), PG(k), PB(k), PS(k) and PW (k) are the EV
demanded power, the power from the grid, the stationary
battery capacity, the solar power and wind power at the time
interval k, respectively. All of these power elements constitute
the system environment and output the state SK . In this
section, meteorological data such as historical data on wind
speed and sun radiation are utilised to forecast the next time
step in the production of renewable energy. In this setting,
both the generation of the renewable energy and the demand
for the charging energy from EVs are random and uncertain.
This design aims to maximise the usage of renewable energy



and decrease the amount of energy that may be came from the
main grid and stationary batteries.

Fig. 2. Diagram of the electric fleet depot use case with self-generated
renewable energy

A. Wind power model

The electrical output power of wind turbine systems is gen-
erated by the mechanical power extracted from the available
wind energy by the wind turbine blades. Using aerodynamic
theory, the mechanical power extracted by a wind turbine from
[14] is determined as follows:

Pm =
1

2
ρAu3(t)Cp(θ, λ) (1)

where Pm is the mechanical power taken by a wind turbine, ρ
is the density of air, A is the swept area of the blades, and u is
the wind speed. Cp(θ, λ) represents the proportion of available
wind energy produced by a wind turbine. θ is the pitch angle
of the blade, whereas λ is the tip speed ratio. Assuming a
constant rotational speed and disregarding the percentage, the
electrical power output of a wind turbine may be calculated
as follows:

Pm =
1

2
ρAu3(t) (2)

The 10kW horizontal axis wind turbine (HAWT) used in
this paper as [15] is modelled in Table 1 along with its
technical characteristics, where ur represents the rated wind
speed, uc represents the cut-in speed (when the electrical
power output rises above zero and power generation begins),
and uf represents the furling wind speed (when the turbine
is shut down to prevent structural damage). Per is the rated
power with a 10kW value. As illustrated in the picture, it
is assumed that the output power increases between uc and
ur and then remains constant between ur and uf . All other
conditions result in the emission of 0 power. Consequently, the
aforementioned criteria may be condensed into the piece-wise
function shown below:

Pm(t) =


0 , if u(t) ≤ uc

Per(u
3
c−u3(t))

u3
c−u3

r
, if uc < u(t) ≤ ur

Per , if ur < u(t) ≤ uf

0 , if uf ≤ u(t)

(3)

TABLE I
SPECIFICATIONS OF THE 10KW WIND TURBINE GENERATOR [15]

Parameter Values
Type Three blade upwind
Rated power (kW): Per 10
Start up wind speed (m/s): us 3.4
Cut in wind speed (m/s): uc 3.1
Rated wind speed (m/s): ur 13
Furling wind speed (m/s): uf 15.6
Max. design wind speed (m/s): um 54
Rotor shaft speed (rpm): R 60-350

According to equation (3), the problem of wind energy gener-
ation may be analysed using the parameters of the anticipated
wind speed and the actual wind turbine employed. In com-
bination with equation (1), the following expression may be
used to forecast wind speed:

u(t) = W (NWP (t− 1), . . . , NWP (t−m),

u(t− 1), . . . , u(t− n))
(4)

where W (NWP, u) is the predicted function for wind speed.
NWP is the NWP data of the last m hours. n is the last n
hours of the wind speed.

B. PV model
Akhbari et al [16] expressed the DC power provided by a

solar PV source as:

Pdc(t) = Ieff (t)ηgAs (5)

where Ieff (t) represents the incident efficient radiance
(Wm−2), ηg represents the solar PV source efficiency and
As represents the solar PV source effective surface area (m2).
The efficiency of solar PV sources is affected by ambient tem-
perature, temperature loss coefficient, and nominal operating
cell temperature, according to [17]. Because the power of solar
energy and solar incident efficient radiance are linearly related
in the equation above, the key to forecasting solar energy
output is to estimate Ieff (t). The PV model parameters of
the simulation in this work learn from the actual solar panel
system at the Pandon Building at Northumbria University.
The entire array will provide 23,000 kWh annually for the
Northumbria University pandon building solar power system,
saving 10 tonnes of CO2. The parameters for the 30 kW solar
PV system are shown in Table 2.

Combined with equation (5), the prediction of the solar
irradiance can be expressed as:

Ieff (t) = W (NWP (t− 1), . . . , NWP (t−m,),

Ieff (t− 1), . . . , Ieff (t− n,))
(6)

This research proposes a technique for forecasting renew-
able energy from NWP data and time series. Nonetheless,
the primary contribution of this article is the creation of
an environment that combines the production of renewable
energy with the charging of EVs. Therefore, the approach of
renewable energy prediction is not restricted to time series.
The values of m, and n, in this case differ from those in the
predicted approach of wind speed.



TABLE II
PARAMETER FOR THE 30KW SOLAR POWER SYSTEM [18]

Parameter Values
Peak power (kW) 29.84
Production (estimate) (kWh/year) 23,024.00
Panels Seraphim SPR-6PB-265
Area (m2):As 188.00
Inverter Solar Edge SE17000 & SE4000
Orientation 180° (SOUTH)
Slope 11°

C. EV Charging Demand

This paper proposes ten fixed charging piles (stations) for
EVs’ charging. It is also possible to adjust the number of the
charging piles based on the real circumstances. During each
k interval, the charging piles are free to either charge or not
charge the EVs. As seen in Fig. 3, the light blue rectangles
indicate the charging states at each time step k. There are 96
time steps of 15 minutes length each if the design is based on
one day as an episode.

Fig. 3. Charging piles model

Noting that the connect time is less than or equal to the
charging time is important. This suggests that the majority
of EV owners attach the charging plug and then leave the
vehicle. The expectation is that when they return to the EV,
it will be completely charged or meet driving requirements.
So in Fig. 4, the dark blue block represent the connect time
and the red block is the charging time within the connect
time. Therefore, the design should optimise the utilisation of
renewable energy. This should determine the optimal charging
time for the generation of the renewable energy. In addition,
since the user’s return time is unpredictable, early charging is
also a requirement.

Fig. 4. charging piles occupancy

Based on the above conditions this paper can summarise
the equation as

PE(k) =

n∑
k=m

10∑
i=1

ECi(k) (7)

where PE(k) is the total required power from the EVs as
shown in Fig. 2. ECi(k) is the energy to be charged from
every EVs. m and n is the time period required for the EV to
be charged. And the iterative equation for charging the EV i
is:

ECi(k + 1) = ECi(k)− ai(k)Pv ·
1

4
(8)

where ai(k) is the action from the agent and ai(k) ∈ [0, 1].
It displays if the EV is currently being charged or discharged
(0 for discharge and 1 for charge). Pv represents the charging
power. Since the k time period is set to 15 minutes in this
article, it is multiplied by 1/4 when converted to energy.
The following is the iterative formula for EVs allocation of
charging piles as

Leave : PO(k + 1) = PO(k)− POL(k)

Park : PO(k + 1) = PO(k)

Arrive : PO(k + 1) = PO(k) + POA(k)

(9)

where PO(k) denotes the occupancy status of the 10 charging
piles set in this paper PO(k) = [po1(k).....poi(k)....po10(k)],
poi(k) ∈ [0, 1] and 0 means no occupancy, 1 means a car is
parked in this space. POL(k) is the EVs leave status vector,
where 1 indicates the EV has left and 0 indicates it has not.
POA(k) is the arrival status vector for the electric vehicle,
where 1 signifies that the EV has arrived and 0 indicates that
it has not.

IV. NUMERICAL RESULTS

This section presents the generation of renewable energy
and the EVs charging demand energy of the environment for
the subsequent reinforcement learning algorithm.

A. Renewable Source Generation

Fig. 5. Newcastle upon Tyne wind
speed distribution

Fig. 6. Newcastle upon Tyne solar
irradiance full day distribution

The historical weather data from Newcastle upon Tyne
was used to obtain the predicted renewable energy. The wind
speed, solar radiation and NWP data for Newcastle-upon-Tyne
with latitude 54.9792°N, longitude 1.59446°W, from April 1st,
2020 to April 1st, 2022 is utilized [19]. Fig. 5 and Fig. 6,
respectively, show wind speed and sun radiation distribution
statistics. The wind speed distribution follows the Weibull



distribution parameter A = 19.98 and B = 1.91. The Weibull
distribution is commonly used in industrial manufacturing,
weather prediction, reliability and failure analysis, as well as
life insurance models for the quantification of recurring claims.
Its probability density is:

f(x;A,B) =

{
B
A ( x

A )B−1e−(x/A)B ifx ≤ 0

0 ifx > 0
(10)

where, A is the scale parameter and B is the shape parameter.
The historical solar radiation data are distributed by being
averaged to 24 hours per day, as shown in Fig. 6. The
fluctuation range is shown in the area within the dashed line
in this figure. Therefore, in the design of the environment, the
uncertainty of the energy generated by wind and solar energy
is generated randomly, and the generated energy is used to
meet the EV’s energy requirements.

B. EV Charging demand analysis

In terms of energy usage, this paper combines statistics on
EV demand with data from an Oslo (Norway) car parking
garage-based set of EV charging stations. The connection time
data in Fig. 7 represents how long an EV is connected to a
charging station. That may or may not be equal to how long the
EV parks at the parking space, but obviously the parking time
would be at least the length of the connection time. However,
depending on the EV battery status (or the charging policy),
the connection time is not always the same as the charging
time. However, the connection time is a good index for the
charging time, in particular, when the connection duration is
relatively short and the EV leaves without being fully charged.
Comparing the connection duration of year 2017 (Fig. 7, on
the left) and that of year 2019 (Fig. 8, on the right), it can be
found that the pattern are similar, but the number of sessions
in year 2019 is much higher than that in year 2017. An in-
depth analysis suggests that the highest frequency of charging
sessions is in the range about 20 minutes. Figure 7, only
depicts the charging session shorter than 1441 minutes (24
hours) and the fully data sets also shows that some charging
session are longer than 24 hours. A few ones are longer
than 4 days. These extremely long charging sessions only
take a small portion and represents rare scenarios, and is
regarded the outlier data. This outlier data is not considered
in this analysis section. Fig. 8 depicts the daily energy use for
charging the EVs over a period of 600 days. In order to allow
reinforcement learning agent to experience every scenario,
the configuration of the reinforcement learning simulation
environment necessitates that this study calculates the average
daily energy consumed to charge the EV.This energy is also
distributed uniformly across each time interval. To determine
EVs charging action, the algorithm can select a time period
that best matches with the renewable energy generation. From
the paper used data, the mean charging demand for electric
vehicles is 12.83kWh, with a standard deviation of 16.24.
The smallest demand energy is 0.0kWh, while the maximum
demand energy is 91.15kWh. Therefore, the above data will

be incorporated into the simulation environment for future
reinforcement learning designs.

Fig. 7. Connection time distribution

Fig. 8. Average daily energy consumption

In this study, the following results can be achieved after
processing the aforementioned data. The average parking time
of EVs is 194 minutes, with a standard deviation of 346. The
shortest parking time is 1 minute, and the longest is 1439
minutes. In the simulation, 10 parking spaces were selected
from the aforementioned data to serve as the reinforcement
learning environment (Fig. 3). In 15 minutes (k), the likelihood
of having no parked EVs is 0.91, for one parked car it is 0.074,
for two parked cars it is 0.013 and for three parked cars it is
0.003 at the same k period. These data are inputted into the
algorithm’s environment to generate the parking time period
shown in Fig. 9. White shading indicates a vacant parking
space, whereas black shading indicates one that is occupied.
Based on the aforementioned car arrival distribution, Fig. 10
displays parking occupancy data for three days (k=288) that
have been generated at random.

V. CONCLUSION

This paper creates an useful simulated environment by com-
bining real renewable energy sources with the unpredictability
of wind speed and solar irradiation. This simulation can be
used in future study to optimise the dispatching and charging
schedule for electric vehicles (EVs) in the presence of uncer-
tain EV demand and ORES supply using the reinforcement
learning technique. The distribution of wind in Newcastle upon
Tyne follows the Weibull distribution with parameters A =



Fig. 9. Distribution of car park occu-
pancy over 3 days

Fig. 10. Distribution of the number of
EV charges over 3 days

19.98 and B = 1.58. In addition, by analysing the data from
the charging piles in the Oslo parking garage, the study reveals
an average energy demand of 12.83 kWh, an average parking
time of 194 minutes per EV, and other useful results. This
paper has effectively constructed the simulation environment
for the reinforcement learning algorithm based on these results.
The uncertainty of energy generation, EV energy demand,
and parking time can be incorporated into a future decision
algorithm based on the simulation environment created in this
study.

VI. ACKNOWLEDGEMENT

This work is supported in partial by the EPSRC project
Electric Fleets with On-site Renewable Energy Sources
(EFORES) under grant EP/W028727/1, the Wuhan AI Innova-
tion Program (2022010702040056), and the EU Interreg North
Sea Region programme’s SEEV4-City (Smart, clean Energy
and Electric Vehicles for the City) project (J-No.: 38-2-23-
15). The authors would acknowledge Adrian McLoughlin at
Newcastle City Council and Prof. James Yu at Scottish Power
for their support on application and technical discussions.

REFERENCES

[1] R. Kotter, X. Dai, O. Heidrich, and S. Chu, “Independent
Review of the 2021 CDP submission based on SCATTER
by Newcastle City Council,” Northumbria University,
Tech. Rep., 2021.

[2] R. Kotter et al., “SEEV4-City policy recommendations
and roadmap,” Northumbria University, Newcastle
upon Tyne, Tech. Rep., 2020. [Online]. Available:
https://www.seev4-city.eu

[3] K. Chaudhari, A. Ukil, K. N. Kumar, U. Manandhar,
and S. K. Kollimalla, “Hybrid optimization for economic
deployment of ess in pv-integrated EV charging stations,”
IEEE Transactions on Industrial Informatics, vol. 14,
no. 1, pp. 106–116, 2017.
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